This is weird to write, but it's been bugging me for a while now, so I figure I have to. I see a lot of people asking – more on line than in-person at work, but there's some of both – about which plants are good at removing chemicals from the air, and where one might find these plants. Semi-recently, I had a customer who was very insistent that she had to have some plants from this specific list (out of Reader's Digest: she'd brought the magazine in with her) because those plants had been tested by NASA, and they were good toxin-removers, and anything else might be nice and all, but unless NASA had proven it would improve air quality, she wasn't interested. Another subset of customers want some plants because of their capacity to produce oxygen, and have been told by the deluded or unscrupulous that more oxygen is the Answer! at long last! if you're feeling tired or run down.
Pictures in this post are of various NOID mums from work,
and are only tangentially related to the topic at hand.This is what we call junk science.
Junk science is stuff that's true in some fashion or another, but horribly misunderstood, distorted, or incomplete. This is distinct from
pseudoscience, which is stuff that isn't even a little bit true, but is dressed up in the language of science (vibrations, energy, metabolism, crystal lattices, toxins, quantum, etc.). Plants are tools of both, though not very often – generally the peddlers of junk and pseudoscience want you to buy something manufactured, not a plant, because manufactured things won't propagate themselves. If there's a plant involved, it's usually been ground to a fine powder, or reduced to a picture somewhere in the logo.
Part I: OxygenationLet's start with the oxygen claim, 'cause it's easier to take down. First of all, in order for this to work, we have to assume that your home is airtight. If you're going to be opening your doors and windows, then all bets are off, because any (allegedly) beneficial accumulation of oxygen is negated once all the air inside your home has been replaced with air from elsewhere, an event which is called an "air exchange."
This first qualifier excludes
everybody who's reading this. The average home completes an air exchange about once an hour, and the EPA recommends sealing your home tighter, to extend this to about every 2 hours and 51 minutes. I'm not saying that the air in your home is identical in every respect to the air outside: things can build up. However, there's always a point where the oxygen you generate inside is balanced out by the amount leaving, whatever those relative amounts might be. At that point, there's nothing you can do to increase the average oxygen level in your home except to produce it faster (as by getting more plants) or get it to leave slower (as by sealing your home up even tighter). If all the air is turned completely over every hour, or even every 2 hours and 51 minutes, then that's not going to allow for a whole bunch of buildup of anything. Keep this in mind for later.
When photosynthesis happens, oxygen is produced. In order for the oxygen to leave the plant, though, carbon dioxide has to come in, one for one, and a molecule of carbon dioxide (CO
2) weighs more than an oxygen molecule (O
2). This means that the plant is going to put on mass over time, but we already knew that that happens: we call it
growing. I'll spare you the chemistry, but when all is said and done, the plant adds one molecule of glucose for every six oxygen molecules it gives off.
So we can use this fact to do some math. I'll stick the math in a footnote, so as not to rile the mathphobic in the audience, but the upshot is, just to increase the oxygen content in a small bathroom, say 6 feet wide by 8 feet long by 8 feet tall, by a small (probably not even noticeable) amount, say 1%, over the course of a day (let's assume that the air exchange rate is once per day, which is more than eight times more airtight than the EPA recommends and is therefore damned unlikely) you'd have to have a plant in there that was putting on dry weight at the rate of 11.1 kg/yr (or 24.6 lb/yr).
1 And this is to change the composition of air inside of a
very tiny room by a
very tiny amount. So, ma'am? That peace lily you're buying isn't even going to oxygenate your bathroom, much less your whole ground floor.
But – and this is really my main point here – that's
okay. You wouldn't necessarily
want it to, even if it
could. Unless you are right this minute drowning at the bottom of a swimming pool, in outer space, suffering from carbon monoxide poisoning, adjusting to a move to a higher altitude, or in need of supplemental oxygen due to emphysema or some other lung impairment, you're already getting all the oxygen you need. Even if you feel tired and run down. You're probably not sleeping enough. You may not be eating well. You could be depressed. But
lack of oxygen is not your problem. If everybody feels tired and run-down because of lack of oxygen, and oxygen only comes from plants in one's immediate vicinity, then: please explain this to the
Inuit, who live a plantless existence on ice and permafrost for most of the year. (But explain it to them quickly! They have no oxygen!)
And furthermore (since this dead horse is just laying here, I may as well beat it), if you think about it, the odds are pretty good that just outside your door, or maybe the next county over, there is a very large biomass of plant life just photosynthesizing like mad, in the form of a lawn, or a farm, or a tree, or whatever, which probably puts on all kinds of biomass in a year. Unless you went to completely ridiculous extremes to fill your home floor to ceiling with houseplants (and I don't know what kind of insane person would do
that2), any contribution from your houseplants is going to be completely swamped by the plants outside every time you open the front door.
And if
that's not enough, most of the oxygen on earth doesn't come from land plants in the first place. Wikiposedly (I couldn't confirm this with anything more reliable, though it makes sense), 70% of the oxygen in the air comes from sea life, algae and cyanobacteria and such. Your spider plant, however big and lush, is just not that big of a deal.
Part II: Toxin RemovalThe word "toxin" used to have a more specific meaning. I'm not sure who to blame for the change, but now instead of meaning "something that can and will cause you harm if it gets in your body," it seems to mean "tainted" or "contaminated:" it's more of a psychological word than a physical one. There are a lot of products out there which purport to cleanse toxins out of your body, but there's not a lot of detail on the questions you'd think would be important, like: Which toxins? How did they get there? What happens if I don't remove them? How do you know? A skilled charlatan will have a blizzard of junk science to throw at you; a less-skillful one will have to use pseudoscience and hope you don't know the difference; the newbies will change the subject.
That said, there really are, probably, some things in your air right now that aren't good for you. Exactly how bad we're talking depends on what it is, and where it's coming from, and how frequent your home or office's air exchanges happen, but sure. Not everything in your environment is as pure as the driven snow, the driven snow included.
That said, it's not likely that these chemicals are going to be what finally does you in. They may not even contribute to it, not even a little bit, or reduce your quality of life in any way. But they're also not going to make you healthier, so you may as well get rid of what you can, and if doing this involves a plant, well, plants are pretty, or at least can be, and having pretty stuff around improves your quality of life anyway. So go right ahead: I've got no problem with that. But keep in mind when you hear and read these things that the whole plants-will-save-us-all crap may have been just a weensy bit oversold.
Where this whole plants & toxins thing crosses a line, for me, is the point when people think that it is very, very important that they get a plant for this one, specific purpose. They don't care what the plant looks like, they don't care if they have the conditions to support it, they don't care about the price: if it's on the list, then they have to have it, and it's an
emergency.
There are situations where it might actually
be sort of an emergency to do something about chemical vapors in your home. For example, if you survived Hurricane Katrina and got moved to FEMA trailers provided by the government, who
knew that the trailers' air contained levels of formaldehyde 75 times the maximum level considered safe for workplaces but stuck you there anyway. (Remember when I asked you to keep in mind how oxygen never gets much of a chance to build up in the air, because the air cycles through so fast? Imagine how much formaldehyde has to be being released, continuously, to build up to levels 75 times the amount considered safe. Imagine how much higher the concentration would have to be at the
source of the formaldehyde, then, like kids playing on the floor next to off-gassing carpet, or sleeping with the head of your bed pushed up against an off-gassing wall.)
Then, it might be kind of an emergency to get some plants. Though in that case, you probably don't have enough room or money for the number of plants it would take anyway, so the whole discussion is still kinda moot.
3Although different plants do seem to preferentially take up one chemical or another, I've had trouble finding anything reliable-looking on-line about any chemicals except three: trichloroethylene, formaldehyde, and benzene. So, in the unlikely event that you're sure you have an issue with one of these, do the research and find a plant that will get rid of it. Most of us, though, aren't going to know which chemical might be our main problem. Since 1) it's hard to find specific chemical/plant match-ups anyway, and 2) all plants have some capacity to absorb organic compounds from the air, I say buy what you like and don't worry about it. In general, plants with more surface area will absorb unwanted molecules from the air faster and more completely than plants with less. So you're better off choosing bigger plants rather than smaller plants, rainforest plants rather than succulents, fast-growing plants rather than slow-growing plants. But this isn't a life-or-death thing, and anyway, you're (in theory) going to be living with this plant for a while, so you may as well get something you enjoy looking at.
This is true even if it's not something that NASA specifically checked out.
4 On the other hand, many of the NASA study plants are quite nice, including several that have already been the subject of plant profiles here at PATSP, so there's also no reason to exclude something from consideration just because it's on the list:
Aglaonema spp.
Chamaedorea seifrizii
Chlorophytum comosum
Chrysanthemum morifolium
Dracaena deremensis 'Janet Craig'
Dracaena fragrans 'Massangeana'
Dracaena marginata
Epipremnum aureum
Ficus benjamina
Gerbera jamesonii
Hedera helix
Philodendron hederaceum (a. k. a. P. scandens, P. oxycardium)
Philodendron selloum (a. k. a. P. bipinnatifidum)
Sansevieria trifasciata
Spathiphyllum spp.
The NASA recommendation was for one eight- to ten-inch plant per 100 square feet of floor space (some sources say six- to eight-inch; I'm not sure which was the actual original suggestion); based on my best guesses of how that scales up and down to four-inch plants and sixteen-inch plants and so forth, I think I have at least nineteen times more than the recommendation. We have really,
really non-toxic air here. Or so goes the theory.
One note of caution: in some situations, having a plant inside can actually make air quality
worse, at least in a sense: certain plants are known to cause
allergic reactions in some people, and if dried sap, for example, is on the surface of a leaf and then gets stirred up by the wind, or a featherduster, or whatever, then it could, in theory, lead to some respiratory distress, though I was unable to find evidence that this had ever actually happened to anybody in any kind of life-threatening way. I assume that the same plants that are known to cause contact allergies would also be the worst offenders on this count, so
Ficus spp.,
Euphorbia spp.,
Synadenium grantii,
Hedera helix,
Pedilanthus tithymaloides,
Yucca guatemalensis,
Agave spp., and so on, might not be the plants you want for this, if you're extraordinarily sensitive to plant materials in general. Or use pots filled with dirt, which also works, though not as well.
5I'd prefer that the people buying houseplants were buying them because they
liked them, not because they're expecting them to do a job. And I'd
really rather that the people buying them weren't expecting them to give them super-oxygenated energy! or remove toxins (for "toxins" read
evil itself) from their environment, because this is a lot more to ask of a plant than most plants are capable of, and all involved are likely to wind up disappointed in the end.
[shrug] It's not up to me why people buy, obviously. I suppose I just don't relate to people who need an excuse.
-